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Abstract. The S-matrix, which is exact for a model potential that can be made to closely
approximate a given physical potential, is found in closed form as a function of complex system
energy. This allows a calculation of the density of resonance states for real scattering energies,
from which real resonance position, total widths, and partial widths can easily be extracted.
Alternatively, a direct search of the poles of the S-matrix in the complex energy plane locates
the complex resonance energies while the residues of the S-matrix elements at each pole yield
the resonance partial widths.

The work reported here is in continuation of the authors’ effort [1, 2] to utilize the advantages
of the J-matrix method of scattering [3-7] in the calculation of resonance parameters, a
subject of growing recent interest {8—11]. This method, which uses only square-integrable
basis functions, has two desirable properties. First, it finds the exact S-mafrix for a model
problem that closely approximates the given physical problem. The second is that this
S-matrix is given in closed form in terms of an arbitrary value of the scatiering energy
E. By considering the energy parameter £ to be complex, one has a natural closed form
analytic continuation of the S-mafrix in the complex energy plane valid in the vicinity of the
real energy axis. This allows us to use the J-matrix method of scattering to calculate the
resonance parameters of narrow resonances using either the indirect or the direct approaches
with equal ease. In the first approach one carries out a complete real energy calculation
of a relevant physical quantity such as the cross sections or the eigenphase shifts near a
resonance. One then extracts information on the real resonance position E, and total width
I' by fitting the result to0 a Breit-Wigner form plus background [11-13]. Here we propose
to use the S-matrix to calculate directly the density of resonance states p(E) using the
collision life-time matrix Q [, 14, 15]:

1 dst
Ey=—T" =iS—. 1
p(E) T i) | Q=1 a5 (1)
Near the real resonance energy E;, the density p(E) has the form

1 r/2
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In the multi-channel case, we can extract the partial widths from the open-channel
contribution to the trace, namely
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where T, is the partial width associated with channel a.

In the direct approach, the complex resonance energy ¢ = E; — il'/2 is an isolated
point in the complex energy plane with special properties. It is either the cigenvalue of
a complex dilated Hamiltonian [10, 16] or equivalently the pole of the Green’s function,
T-matrix, or the S-matrix. Here we search for ¢; as the poles of the exact model S-matrix
i the second sheet of the complex energy plane. In a multi-channel case the S-matrix has,
near the complex resonance pole, the form [17];

. bg o YQTE
Sap(B) = S5(8) —ig=E- @

where S:ﬁ (E) is the background part of the S-matrix that behaves regularly at the pole and
Ve is related to the partial width via the relation Ty = [, 77%|. Thus once we find ¢, we can
obtain the partial widths as

T = lim |(E - €)Sa(E)]. (5)

In the single-channel case, the J-matrix method of scattering uses a complete set of
square-integrable basis functions to solve exactly the zero-order Schridinger equation

HoV(E, r) = EVYYE, 1) (6)
where

14 I+ =z
=—s 0o+ 7
Ho 2dr? 2r2 * r @

The basis may be either the Slater basis

$a(r) = A Fe 2L ) n=0,1,... @®)
or the oscillator basis (the case z = 0 only)

$a(r) = QryHle P ERLIFROYY p=0,1,.. ©)

where A is a free scale parameter and L¥(x) is the generalized Laguerre polynomial [18].
The coefficients that make the wavefunction

WUE, 1) =Y sa(Edgn(r) (10)
r=0

solve the Schrodinger equation (6) and behave asymptotically sine-like are already known
[4,71. Similarly the coefficients that make the function

WYUE,7) = calEVa(r) (11

n=0

behave asymptotically cosine-like and are already known.
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Now, given a short-range potential V, the method finds the exact solution to the model
potential W derivable from V by restricting the matrix representation of the latter to the
first N members of the complete basis; i.e.

{DnlV | Pm) for0<n, mEN-1

(12
0 otherwise. 12

Wn.m = (¢nlwl¢m) = {

This is similar to the modelling scheme followed in the R-matrix method of scattering
[19] which replaces the short-range potential by a cut-off potential restricted to an inner
configuration space. Heller has shown [20] that this modelling procedure does not lead
to spurious resonances that plagued variational calculations. Furthermore, the resonances
associated with the model potential approximate in a well defined and improvable fashion
the resonances of the real problem. .

Now, the J-matrix method solves the Schridinger equation

(Hy+ WYW(E,r)=EV(E,r) : (13)

exactly. The solution satisfying an ontgoing boundary condition is

N1

W(E,r) = ZJ(E)¢,;(?)+Z (calE) — is(E)) — S(E)(calE) +isn(ENIGalr)  (14)

n=0

in complete analogy to the form of the R-matrix wavefenction where the solution in the
outer region of configuration space is a combination of an incoming wave and an outgoing
wave modified by the S-mateix. The set {d,}Y-] contains the coefficients of wavefunction
in the inner space to which the potential is restricted. These coefficients as well as the
S-matrix can be solved exactly by equating the projection on both sides of the Schrodinger
equation (13) on each member of the complete basis. The S-maitrix, which is the quantity
of interest to us, has the exact solution

(exn—1(E) — isn_1(ED) + gn-1,N-1(E}In_1 N (E){cn(E) — isy(E))
{cN=1(E) + isy-1(E)) + gu—-1,8-1(E)In_1 v (E){cn(E) + isn (E))

S(E) = (15)

Here the matrix {g,, m} m—O is the inverse of the matrix {(Hp+ V — E)p, m}N g Also the
matrix Jpm = {¢|(Ho — E)l¢n) happens to be tridiagonal. The previous effort [1,2] made
use of the fact that the above expression for S(E) has a simple form at the N Harris energy
eigenvalues which are the poles of gy—1,x-1(E). The set of ¥ values of S{E) is then
analytically continued in the complex energy plane using the point-wise rational fraction
technique of Haymaker and Schlessinger [21]. In this effort we use the analytic expression
as given directly by equation (15) to provide a natural analytic continuation of S(E) valid
in the vicinity of the real energy axis. In addition, we note the following interesting points
about the above expression for S(E):

(i) It is exact for the N-term separable potential W which closely approximates the
physical potential,

(ii) it is a closed-form solution in terms of the scattering energy parameter E,

(iif) it is unitary for real positive energies E,

(1v) 'I‘he inversion of the N x N matrix {{Ho+V —E),, ,,,}n o 10 obtain the N x N matrix

{ga,mln m—O is carried out only once in the calculation, independent of the energy parameter
E, and finally
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(v) the Coulomb term (z/r) is fully taken into account in the Slater basis, a distinction
for the J-matrix method.

We have used this S-matrix to calculate the density of resonance states for the potential
V{r) = 7.5r%e™" which is already known [8,22] to support an s-wave resonance at
E, = 3.426 having total width " = 2.56 x 10~2 for the case where z = 0. The result of
fitting p(E) to a Breit-Wigner form is shown in figure 1. We have also repeated the same
calculation for the case where the zero-order Hamiltonian contains the attractive Coulomb
term (—1/r). We compare our resnlis with that obtained using the complex rotation method

[16,17].

30 T T T T T

density

0
335 340 3.45 3.50
energy (a.u.)

Figure 1, The density of resonance states p(E)} for the s-wave scattering from the potential
V{r) =7.5r2 e (z =0 case), czleulated using equation (1) (open circles), with N = 30 Slater
basis and A = 5.5. The Lorentzian (continuous curve) has £, = 3426 and I' = 2.58 x10~2 a..

On the other hand, by considering E in S(E) to be complex we may search for the
poles & of S(E) in the complex energy plane. The search strategy has previously been
described in detail [2]. Table ! gives the results of such a search for the cases mentioned
above as a function of the model size N.

The generalization to multi-channel scattering is straightforward. We assume a target
of discrete internal states having energies Ei, E, ..., Ey. The projectile is structureless
and spinless. The channel potentials V% are short range with any possible Coulomb terms
included in the zero-order Hamiltonian in each channel. The basis {qf»f,“)(r)}fga ! in each
channel & may either be of the Slater or the oscillator type, where A, may be different for
each channel. The model potential W*? is obtained from V¥ in an analogous fashion to
the single-channel case, namely

W:ﬁ, = (¢,(,a)1W[¢n<‘f)) — { (¢;(:a)lvl¢;(nﬁ)> 0<nCNe~-1L,0<m<Ng—1 (16)
' 0 otherwise.

The multi-channel generalization of the single-channel S-matrix has been given in detail
elsewhere [2]. It satisfies similar properties to those given by (i) to (¥) above. What is
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Table 1. Resonance parameters resulting from the complex energy search for the poles of the
S-matrix of equation (15) for the potential V{) = 7.5r%e™", for the cases z = and z = —1
as a function of model size N for Slater basis and A = 5.5. The resulis of Mandelshtam et af
[8] (for the z = O case) are included. For the case z = —1, the complex rotation method has
been used with a 30 Slater basis having A = 5.5 and ¢ = 0.2 rad.

z N Ee r
[V 1 3.426 2.17 x 10~2
20 3.426 279 x 1072
25 3.427 245 x 10~2
30 3426 2.58 x 10~2
Mandelshtam et af 3.426 2.56 x 1072
-1 15 17805 862 x 1075
20 - 1.7805 919 x 10~°
25 1.7805 944 x 10~5
30 17805  9.58x 1075

Complex rotation 17805  9.57x 107F

500 T

400

300 -

density

200

100 -

0 - A . - .'.
45,057 45,059 45.061 £5.063 45,065
energy {au) -

Figore 2, The density of resonance states p(E) for the three-channel problem defined in
eguation (17) in the text, calculated using equation (1) (squares), with & = 30 oscillator basis
in each channel having the same A = 3,97, The Lorentzian (continuous curve) has E, = 45.061
and I = 1,30 10~3, The contributions of channel 1 (open circles) and channel 2 (solid circles)
are fitted to Lorentzians with the same E. and with I'; = 5.40 x 10~7 and 'y = 7.47 x 1075,
respectively.

important is that the exact multi-channel J-matrix expression for the S-matrix can be used
as its own analytic continuation in the complex energy plane valid in the vicinity of the real
energy axis.

We have used the osciliator basis to calculate the exact model S-matrix for the three-
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Table 2. Resonance parameters resulting from the complex energy search for the poles of the
S-matrix of equation (15} for the three-channel problem defined in equation (17} in the text, as
a function of model size N, taken to be the same for all channels with the same A = 3.97. The
results of Fels and Hazi [23] are incladed,

N E; r r Iz

20 45076  124x 10~  480x10~* 758 x 10~
25 45066 1.36x 1073  594x10~* 766 %10~
30 45068 . 1.30x10-3 537x107* 7.65x 1074

Fels and Hazi  45.068 120 %1073 529x10™*  760x10™*

channel problem coupled by square-well potentials, an example often used as a testing
ground for mew schemes [11,13,17,23]. The target threshold energies are E, = 0.0,
E; = 37.5, and E; = 50.0 a.u., while the potential parameters are

U
V“ﬁ(r)= I:'—i-"i| forOgrgl
0 otherwise (17)
10,0 0.1 10
U= ( 01 20 0.1 ) .
10 01 -160

This problem is known to support an s-wave resonance at E, = 45.086 having total width
I' = 1.29 x 10~3. We calculated the density of resonance states p(E) and the contribution
of the two open channels to them from the calculated S-matrix in equations (2) and (3). In
figure 2 we fitted the results to Breit-Wigner forms with the same position and width. The
extracted information on the resonance position, total width, and partial widths compares
well with that of Fels and Hazi [23].

Alternatively, we have used the same model S-matrix S{E) but now with E considered
to be complex to search for its poles in the complex energy plane. Table 2 shows the
computed values of the resonance parameters as a function of model size.

It is clear that the reason the J-matrix method of scattering is able to characterize
resonances directly or indirectly is the availability of an exact model S-matrix in closed
form as a function of the complex energy parameter E.
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