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Abstract. The S-matrix, which is exact for a model potential that can be made to closely 
approximate a given physical potential. is found in closed form as a function of complex system 
energy. This allows a calculation of the density of resonance states for real scattering energies, 
from which real resonance position. total widths, and partial widths CM easily be extracted. 
Alternatively, a direct search of the poles of the S-matrix in the complex energy plane locafes 
the complex resonmce energies while the residues of the S-matrix elements at each pole yield 
the resonance partial widths. 

The work reported here is in continuation of the authors' effoft [ 1,2] to utilize the advantages 
of the J-matrix method of scattering [3-71 in the calculation of resonance parameters, a 
subject of growing recent interest [8-111. This method, which uses only square-integrable 
basis functions, has two desirable properties. First, it finds the exact S-matrix for a model 
problem that closely approximates the given physical problem. D e  second is that this 
S-matrix is given in closed form in terms of an arbitrary value of the scattering energy 
E. By considering the energy parameter E to be complex, one has a natural closed form 
analytic continuation of the S-matrix in the complex energy plane valid in the vicinity of the 
real energy axis. This allows us to use the J-matrix method of scattering to calculate the 
resonance parameters of narrow resonances using either the indirect or the direct approaches 
with equal ease. In the first approach one carries out a complete real energy calculation 
of a relevant physical quantity such as the cross sections or the eigenphase shifts near a 
resonance. One then extracts information on the real rqsonance position Er and total width 
r by fitting the result to a Breit-Wigner form plus background [ll-131. Here we propose 
to use the S-matrix to calculate directly the density of resonance states p(E) using the 
collision life-time matrix Q [S, 14,151: 

1 dSt 
dE  

p(E) = Tr[Q] Q =is-. 

Near the real resonance energy Er, the density #(E) has the form 

1 rl2 p(E) = ~ -  
K (E - EJ2 + r2/4 '  

In the multi-channel case, we can extract the partial widths 6 
contribution to the trace, namely 

the 

(2) 

,en-channel 
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where r, is the partial width associated with channel U. 
In the direct approach, the complex resonance energy er = Er - ir/2 is an isolated 

point in the complex energy plane with special properties. It is either the cigenvalue of 
a complex dilated Hamiltonian [IO, 161 or equivalently the pole of the Green's function, 
T-matrix, or the S-matrix. Here we search for as the poles of the exact model S-matrix 
in the second sheet of the complex energy plane. In a multi-channel case the S-matrix has, 
near the complex resonance pole, the form [17]: 
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where $;(E) is the background part of the S-matrix that behaves regularly at the pole and 
ya is related to the partial width via the relation re = Iy.Fe*,l. Thus once we find cr we can 
obtain the partial widths as 

rm = lim [(E - er)SdE)l. (5) 
f i+G 

In the single-channel case, the J-matrix method of scattering uses a complete set of 
square-integrable basis functions to solve exactly the zero-order Schrodinger equation 

H0Yo(E, r )  = EYo(E ,  r) (6) 

where 

1 d2 Z(I+ 1) z + - + -. 2dr2 2r2 r Ho = 

The basis may be either the Slater basis 

IC1 -hr /Z~Z+l  (A 4 " ( r ) = ( A r ) e  r) n=0,1,  ... 

or the oscillator basis (the case z = 0 only) 

&(r) = (Ar)'+'e-Azr2~2L~+'~z(A2r2) n = 0, 1, . . . (9) 

where A is a free scale parameter and L:(x) is the generalized Laguerre polynomial 1181. 
The coefficients that make the wavefunction 

solve the Schrodinger equation (6) and behave asymptotically sinelike are already known 
[4,7]. Similarly the coefficients that make the function 

behave asymptotically cosine-like and are already known. 
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Now, given a short-range potential V ,  the method finds the exact solution to the model 
potential W derivable from V by restricting the mabix representation of the latter to the 
first N members of the complete basis; i.e. 

This is similar to the modelling scheme followed in the R-matrix method of scattering 
[I91 which replaces the short-range potential by a cut-off potential restricted to inner 
configuration space. Heller has shown [ZO] that this modelling procedure does not lead 
to spurious resonances that plagued variational calculations. Furthermore, the resonances 
associated with the model potential approximate in a well defined and improvable fashion 
the resonances of the real problem. 

Now, the J-matrix method solves the Schrodinger equation 

(Ho + W)*(E,  r )  = E W E ,  r )  (13) 

exactly. The solution satisfying an outgoing boundary condition is 

N-1 m 

W E ,  4 = x d n ( E ) h ( r )  + x [ ( c n ( E )  - & ( E ) )  - S(E)(cAE)  + i sn (W)1Mr)  (14) 
"=O #?=N 

in complete analogy to the form of the R-matrix wavefunction where the solution in the 
outer region of configuration space is a combination of an incoming wave and an outgoing 
wave modified by the S-matrix. The set [d,,]:;' contains the coefficients of wavefunction 
in the inner space to which the potential is restricted. These coefficients as well as the 
S-matrix can be solved exactly by equating the projection on both sides of the Schrijdinger 
equation (13) on each member of the complete basis. The S-matrix, which is the quantity 
of interest to us, has the exact solution 

Here the matrix { g n , m ] ~ ; ~ o  is the inverse of the matrix ((Ho + V - E)n,,,,]t;LO. Also the 
matrix Jn,m = (&I(Ho - E)l@") happens to be tridiagonal. The previous effort [l, 21 made 
use of the fact that the above expression for S ( E )  has a simple form at the N Hanis energy 
eigenvalues which are the poles of gN-1.N-1(E). The set of N values of S ( E )  is then 
analytically continued in the complex energy plane using the point-wise rational fraction 
technique of Haymaker and Schlessinger [XI. In this effort we use the analytic expression 
as given directly by equation (15) to provide a natural analytic continuation of S ( E )  valid 
in the vicinity of the real energy axis. In addition, we note the following interesting points 
about the above expression for S(E) :  

(i) It is exuct for the N-term separable potential W which closely approximates the 
physical potential, 

(ii) it is a closed-form solution in terms of the scattering energy parameter E ,  
(iii) it is unitary for real positive energies E ,  
(iv) The inversion of the N x N matrix [ ( H o + V - E ) ~ , ~ ] ~ ; L  to obtain the N x N matrix 

[gn,,,J;;h is carried out only once in the calculation, independent of the energy parameter 
E ,  and finally 
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(v) the Coulomb term (z/r) is fully taken into account in the Slater basis, a distinction 
for the .I-matrix method. 

We have used this S-matrix to calculate the density of resonance states for the potential 
V(r )  = 7.5rze-' which is already known [8,22] to support an s-wave resonance at 
Er = 3.426 having total width r = 2.56 x lo-* for the case where z = 0. The result of 
fitting &E) to a Breit-Wigner form is shown in figure 1. We have also repeated the same 
calculation for the case where the zero-order Hamiltonian contains the attractive Coulomb 
term (-l/r). We compare our results with that obtained using the complex rotation method 
[16,17]. 

30------1 

energy (a.u.1 

Figure 1. The density of resonance states p ( E )  for the 8-wave scattering from the potential 
V ( r )  = 7 5 '  e-' (z = 0 case). calculated using eqnation (1) (open circles), with N = 30 Slater 
basis and h = 5.5. The Lorentzian (continuous curve) h8s E, = 3.426 and r = 2.58 x a.". 

On the other hand, by considering E in S(E) to be complex we may search for the 
poles cr of S(E) in the complex energy plane. The search strategy has previously been 
described in detail 121. Table 1 gives the results of such a search for the cases mentioned 
above as a function of the model size N .  

The generalization to multi-channel scattering is stmightforward. We assume a target 
of discrete internal states having energies E,, E*, . . . , EM. The projectile is structureless 
and spinless. The channel potentials V@ are short range with any possible Coulomb terms 
included in the zero-order Hamiltonian in each channel. The basis {q5t)(r))fS1 in,each 
channel OL may either be of the Slater or the oscillator type, where h. may be different for 
each channel. The model potential Wag is obtained from V @  in an analogous fashion to 
the singlechannel case, namely 

The multi-channel generalization of the single-channel S-matrix has been given in detail 
elsewhere [Z]. It satisfies similar properties to those given by (i) to (v) above. What is 
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Table 1. Resonance parameters resulting from the complex energy search for the poles of the 
S-matrix of equation (15) for the potential V ( T )  = 7.5r2ee-’. for the cases z = 0 and z = - 1  
as a function of model size N for Slater basis and A = 5.5. The results of Mandelshtam et 01 
[E] (for the L = 0 case) are included. For the case L = -1, the complex rotation method has 
been used with a 30 Slater basis having A = 5.5 and 67 = 0.2 rad. 

Z N  E. r 
0 15 3.426 2.17 x 

20 3.426 2.79 x 
25 3.427 2.45 x 
30 3.426 2.58 x 
Mandelshtam et a1 3.426 2.56 x 

-1 15 1.7805 8.62 x 
20 1.7805 9.19 x 
25 1.7805 9.44 x 
30 1.7805 9.58 x 10” 
Comolex rotation 1.7805 9.57 x 

energy ( a d  

Figure 2. The density of resonance States p ( E )  for lhe threechannel problem defined in 
equation (17) in the texs calculated using equation (I) (squares), with N = 30 oscillator basis 
in each channel having the same i = 3.97. The Larentzian (continuous curve) has E, = 45.061 
and r = 1.30 x 1 O-3. The conhibutions of channel 1 (open circles) and channel 2 (solid circles) 
are fitted to Lorenaians with the same E, and with rI = 5.40 x lo-’ and h = 7.47 x lo@, 
respectively. 

important is that the exact multi-channel J-matrix expression for the S-matrix can be used 
as its own analytic continuation in the complex energy plane valid in the vicinity of the real 
energy axis. 

We have used the oscillator basis to calculate the exact model S-matrix for the three 
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Table 2 Resonan& paramems resulting from the complex energy seanh for the poles of the 
S-manix of equation (15) for the ibree-channel pmblem defined in equation (17) in the text, as 
a function of model sire N ,  taken to be the same for all channels with the Same 1 = 3.97. The 
results of Fels and Hari p31 are included. 

r rj r, E. N 

20 45.076 1.24 x 4.80 x IO4 7.58 x IOn4 
25 45.066 ~ 1.36 x 5.94 x IO4 7.66 x loM4 
30 45.068 , 1.30 x lo-) 5.37 x 7.65 x 
Fels and Hazi 45.068 129 x 5.29 x 7.60 x 

channel problem coupled by square-well potentials, an example often used as a testing 
ground for new schemes [11,13,17,231. The target threshold energies are El = 0.0, 
Ez = 37.5, and E3 = 50.0 ax., while the potential parameters are 

otherwise 
10.0 0.1 

1.0 0.1 -16.0 
0.1 2.0 A:; ) 

This problem is known to support an s-wave resonance at E, = 45.086 having total width 
r = 1.29 x We calculated the density of resonance states p ( E )  and the contribution 
of the two open channels to them from the calculated S-matrix in equations (2) and (3). In 
f igre  2 we fitted the results to Breit-Wigner forms with the same position and width. The 
extracted information on the resonance position, total width, and partial widths compares 
well with that of Fels and Hazi [23]. 

Alternatively, we have used the same model S-matrix S(E) but now with E considered 
to be complex to search for its poles in the complex energy plane. Table 2 shows the 
computed values of the resonance parameters as a function of model size. 

It is clear that the reason the J-matrix method of scattering is able to characterize 
resonances directly or indirectly is the availability of an exact model S-matrix in closed 
form as a function of the complex energy parameter E. 
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